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Possible physical meaning of the Tsallis entropy parameter
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Since the proposal of the Tsallis generalized entropy, the general explanation of the role played by the
parametenq that defines which specific entropy to pick among a whole family, remained somewhat partial and
tentative, although some particular examples were taken into account specifically. The purpose of the present
paper is to present a rigorous formal derivation of a mathematical expression giving the pametgms
of the momentum fluctuations of a stochastic process, thus furnishing at least one of its possible physical
origins.
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I. INTRODUCTION was found, which reduces to the usual linear Sdhmger

equation in theg—1 limit, as required. We called this equa-
In 1988 Tsallis proposed a generalized entropy mathtion the generalized Schdinger equation. In the derivation

ematically given by[1] done in Paper IV(to which the reader is referred for the
details we wrote(for the equiprobability cage
_ q _
-3 o (x:t)= 1+—[1_q]S(X't)>ll(1 Y )
Sq:kB q—l ' PRz I(B e

b- and used the Liouville equation and the notion of fluctuation

wherekg is the Boltzmann constant, which for the equipro ; . O . .
B auip to find the generalized Schiimger equation, given by

ability case, like in the microcanonical ensemble, becomes
2
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this expression in the limigj— 1 reproduces the Boltzmann-

Gibbs entropy =if

aln it
q\/alg—‘i(x), 2)

S;=—kglnp. where

This generalization brought about the problem of knowing 3—q

the physical interpretation of the parametgtabeling the hq= Tﬁ

whole set of entropies. Other sets of entropies were also

proposed?2], each one with its own set of properties, but we gnd

will focus only on the Tsallis generalization in this paper. |

will be using the equiprobability case for reasons that will 1 is(x:t)

soon become clear. In grq(x;t) = xsq(x;t)Jr _— 3)
Very recently | presented an axiomatic method allowing B ﬁq\/a

the derivation of the Schdinger equation based upon three .

quite simple postulatef3] (hereafter Paper).| This deriva- with s(x;t) related to the mean momentum of the system

tion was then shown to be equivalent to another derivationt""oughp(x,t)=as(x,t)/dx and

also made by m¢4] (Paper 1), based upon the notion of ] . ) _

entropy; | showed then that the Schioger equation is p(x,t)=[1+(1—q)ln{¢//q(x,t)z,bq(x,t)}]l’(l V@

mathematically a tributary of the concept of the Boltzmann-_l_h i b f ted in P e

Gibbs entropy. In a further development of the derivation, | € equation above, for reasons presented in Faper v, 1S

also proved5] (Paper Il) the derivations of Papers | and |l valid for the whole allowed intervat-©<q<3. It is impor-

to be mathematically equivalent to the stochastic derivatioﬁant t(.) strgss that, wheq<0 we have a hyperbolic-type

of de la Pea and Cettd6] and a somewhat complete inter- equation given by

pretation of the formalism in terms of fluctuatiofstochas- 2 2| _ | Ny 2

ticity) was advanced. _ta p(x.t)l—qa N gg(X;t) +q{(9 n ‘/’q(x’t)] V(%)
The derivation method of the usual ScHimger equation 2m ’ Ix? X

presented in Paper Il was then easily extended by Odhad

[7] (Paper I} to embrace the Tsallis generalization of the NI a1In 4g(x;t)

Boltzmann-Gibbs entropy and a ScHinger-type equation q ot '
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and not the parabolic-type equation that is obtaineddfor tuating force(the so-called coarse graining

>0. Equation(2) is the expression we must find by our  SinceAt is a very small time interval, we may write the
stochastic derivation to be presented in the next section. Nofollowing expansion:

it is possible to justify why we are using the equiprobability

expression for the probability density; the derivation method

allows us to find a generalized Schinger equationor a A—t[f(x(t+At),t+At)—f(x(t),t)]
Schralinger equation, in the usual casehich is relatedfor

each probability densitywith the same energywe could f o1 9
have labeled the densities by quantum numbers to make this ~ ot + A—teXF{P(X;t)l_q&ﬁ—x
point even more explicit In the process of derivatiofsee

Paper I\j we also found that the average of the momentum

fluctuations taken over momentum space alone is given byWhere f is an arbitrary function; the difference from the
present calculation to the one already found in the literature

f, (6)

52 52s [6] is simply the extra factop(x;t)1~ % in the exponent of
5p(x)2=—ﬁp(x)q’l—2q, (5) the translation operator. This means that, contrary to the
B Jx

usual stochastic process that furnishes the linear Satger
) ) . equation, translations within the system &y will be depen-
where the result still depends upanin general, since the  gent on the position where the translation takes plavere

average process was taken only over momentum space. gpecifically they will depend upon the density at the point

In the next section we will extend this generalization 10y here the translations take place, which already explains the
the developments made in Paper Il and show what kind of ;e of nonlinearity of the generalized Safinger equa-

stochastic process is related to this generalized Siahyer tion). In the whole derivation process | might have written
equation. With these mathematical developments and alsé’kpressior(G) as simply

the extension of the interpretation already presented in Pa-

pers I-Ill, we will be capable to set forth at least one pos- —
sible interpretatiorn(in terms of fluctuationsfor the role of ‘9_+ —ex;{g(X't)éxi f
the parameteq in actual physical systems. This is the aim of gt At ' x|’

the present paper.

The paper is arranged in the following manner. In theand then looked for the functiag(x;t) as an ansatz that will
second section we will show how we can generalize the stofurnish the correct equation. In what follows | preferred to
chastic derivation of Paper Il to obtain again the generalizeqyse the factop(x;t)*~9 directly, which is a restricted case of
Schralinger equatior(2). In the third section we will show the general ansatz, since it makes the derivation easier to
that the derivation of Paper Il and the present stochastic ongnderstand.
are fully equivalen{by means of the Onsager relatiprad The above expressioi) may be rewritten as
this will make it possible for us to show very clearly the role
of the parameteq within the formalism. The present results

have the advantage of being totally formal and mathemati- i[f(x(t_f_At),t_f_At)_f(X(t)'t)]
cally exact, while furnishing quite a direct physical interpre- At

tation. In the fourth section we will present the interpretation of 1 of

of the results found in the previous sections and also refor- ~ E+ E&(p(x;t)l_q&

mulate the mathematical appearance of the theory to put it

into a Newtonian formatwhich is consistent with the sto- 1 P of
chastic approach and also much easier to graSgction V +—(6x)2p(x;t)1q—[p(x;t)lq—} .
will be devoted to an application of the formal developments 2At X X
of the previous sections. The last section will be reserved to
our concluding remarks. Using expressioli7) and repeating without modifications all
the developments made in Paper (tid which the reader is
Il STOCHASTIC DERIVATION strongly referred th we can find the following equations:
The present stochastic derivation will follgw very closely o g o Ju 9 Ju
the general lines of the one made by de La&and Cetto — +v— — V—(plq—) —)\U——)\V+—<plq—)
[6] and will be just a generalization of their result. o X X X X X X
Now we will considerx(t) as a stochastic process. This =fo/m (8)
means that the velocity related with this process cannot be
obtained by its direct derivation, fot(t) is not, in general, and
differentiable.
In this case we have to introduce a finite time interkéa)
small compared with the characteristic times of the systemd4 _ 'ou v = 9 [ 4 qov| = 9 [ 4 qou| .
atic movementthe one related with Newton’s equatjphbut at Y ax u ax  Urax\Poax) T Vx| P ax) T
large enough compared with the correlation time offtbe- 9
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whereu(x,t) is the stochastic velocity andx,t) is the sys- lll. CONNECTION BETWEEN THE DERIVATIONS
tematic velocity and ~ andv , are characteristic constants

of the derivation(see Paper )l that will be fixed in what The results of the present section are a straightforward

generalization of those derived by me in a previous paper

follows. . . :
In the Newtonian limit, where there are no fluctuations [5.]' Hov_vever, n the present generalized _formulatlon they
we have ' 'will furnish precisely the result we are looking for.
We may begin by rewriting Eq.13),
vy,=v_=0—-u=0 10
+ (10 by 05,
thus giving U= omkg ox (19)
dv IV(X) .
m—=fo=— —— (17  and remember that, for our fluctuating system, we expect the

dt ax linear Onsager relations to be applicalhi§ (the Onsager

relations were proved to be also valid within the Tsallis sta-

as desired. Equatiof8) and(9) are the main equations gov- tistics, as shown ifig])

erning the dynamics of the system.

We now substitute in Eq$8) and(9) the expressions 9S
u=a—, (20)
as(x;t) X
v_=0; mu=p(x;t)= (12
dXx . _— - .
where « is the so-called “friction coefficient” given by the
and write the stochastic velocity as expressior{9]
ﬁq 19Sq 1 0
U= 2mig ax a3 a=— f ~_EL6p(0)5p(s)]ods
B
to find the two equations 1 o o
= q
alas 1 ﬁs)z NHEPSE mszf_mdsf_m p(X)[p(x,0)6p(x,s)]dx, (21)
ax| ot T 2ml ax - %(k—B W)
whereE(@(f) means the expectation value of the argunfent
N fg( pt9 8PS, taken using the Tsallis procedure. Equati¢h$), (20), and
i e o =0 (14 (21) give
3—q
and fiq=h —
9 [dSy 1 3dSqlads 2v.pt %%
A e mmaT h _2>:0' (19 =2 (% gs[ " 0 6p(x,0)8 dx; (22
B q X m/_. S o p(X) [ p(X,O) p(xls)] X, ( )
These last two equations, with the substitution ) ] ) ] )
but, sincet is a constant, which may be fixed by experiment
N=q, using the common value obtained whegs 1, the expression
above may be considered as the very definition of the param-
vy =fhql(2qm) (16) eter g and it unequivocally shows the connection between
_ ) this parameter and the average momentum fluctuations. This
give, finally, is precisely the result we were willing to obtain and it fur-
5 ) 1 o 5 nishes a physical connection betwegrand the stochastic
s 1 f) V00— hq (P g ﬁ) ﬂ(iﬂ_sq 1 processes taking place within the considered subsystem. We
gt 2m\ ax Am| | kg %2 2\ kg dx note, however, that the parametgappears at both sides of
expression(22); this is so because the averages have to be
=0 17 calculated using the probability function that underlies the
choice of the entropy. Thus, expressi@®p) furnishes, in
and principle and theoretically, a transcendental equation giving
1-q 42 the value ofg, whenever one is able to calculate the integral
(9_Sq+ 105 10s LIS (19  On the right-hand side of expressic#®). However, from the

kg X max gm pgx2 experimental point of view, if one is able to determine ex-
perimentally the value of the “friction coefficient” related
These two equations are exactly those we get if we substitut&ith some stochastic process, its departure from the value of
expression(3) into the generalized Schiinger equatiori2),  the usual Planck’s constant will furnish, experimentally, the

meaning that they are equivalent, as we wanted to show. underlying value of the parametar
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IV. FURTHER RESULTS wherem s the mass of the particle is the frequency of the

We have said in the last section that E¢k7) and (18) movement; the generalized Schimger equation(2) be-
: ) , ; ._comes

give the whole dynamical behavior of the system. It is quite
interesting to write these equations in a somewhat different

fashion that may enlighten our understanding of the present ﬁé 1o
subject. Indeed, it is very simple to show that E&j7) may " 2m p(X;t)

be rewritten as

qaz In q(x;t) +q[ dln wq(x;t)rl
x? X

dp(xt) a| Vi ﬁ2 P19 S, +%mw2X2—lﬁ \/_aln % ot)
dt Kg ax?
and has, as its solutiorithe reader may verify this by direct
( 1 &Sq ] (23) substitution, the following.
2\ ke ox (1) For 1<q<3,

which is a Newton-like equation for aawverage momentum
and an effective potential

Mw
) — aC _ 2
Py(x;t)=e exp( 27, X

Veri(X)=V(X)— ke ox

Slpxnt %S, qf 1 dS;)\2
k—B_ 2

4m

eXp( Eq, (25)

]
(24 :eCex;{—;nwa ex%—l—w\/_[l—Z(q

The second term on the right-hand side of the previous ex- a 2\q

pression gives the average alteration of the potential function

by the momentum fluctuationisee Papers Il and )V - 1)C]t], (26)

Thus, Eq.(23) furnishes the connection between the av-

erage dynamical behavior of the system and the statistics

governing the behavior of the fluctuations. The second termvith density given byusing Eq.(1)]

on the right-hand side of expressid®24) is nothing but a

generalized version of Bohm(so-called quantum potential,

whose origin(as we saw in Paper IMs kinetic and comes p(x,t)=

from the fluctuations.

[1+2(g—1)C]+ 7

q
(27)
V. APPLICATION . o
and the constart, given by the normalization integréahote
We will now present a simple example of the above-the integration limits; there is no cutoff and the sample space
mentioned results by solving analytically the harmonic oscil-is [ — o, 4+ 1)
lator problem for the ground statghe excited states are

much more difficult to solve Thus, the potential function is too
given by f p(x,1)9dx=1,
V(X)= 1mwzx2
2 ' being written as
+1 ) 72@ Di@+1)
yaNTT a
co 1 1 h 2(q— 1) 08
“2(qg-1)| — \/mw 2 (28
Vg— ir q—_l

The energyE, becomes

Pa(x;t)=e" ex;{ M 2] expl — I—w[1+ 2(1-q)C]t
2h, 2\q

fiqo
(2) For 0<g<1, with the probability density given by
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(1-q)me ,|Ya-9 negative roots of the probability density, and the sample
p(x;t)={[1-2(1—q)C]— ﬁ—x2 , space must be finije
q

+a
f p(x;t)ddx=1,

where, now, the constar@, given by the integratiorinote
that we have a cutoff, which is given by the positive andbecomes

3—q J 2(1=q)/(1+0q)

1 ﬁ(3Q)”“‘lqr[2(1q)
C=- ‘/E 1

2(1-q)

The energy is, again, )

+ oo
ho=1s eXF(‘)’S)dsf p(x)9[ 5p(x)]°dx
fqw _OC o
E,=[1+2(1-q)C]—.
q 2
i e [ g g
2ymkgJ x?

This result justifies what we have said above about the use of

the microcanonical ensemble; indeed, for egole will be

working with the states related with the same enegy thus giving
(2) For —<q<0,

1 Mw 2ymkg +oo &ZSq
Y — _ _ Y2 _ _ 2q-1
Py(Xt) ex;{ 2(1=q) exp{ thx ) g f_w p(X) P dx. (30
(1—q)
X exp cexg — Jal ot r, Let us apply the above result to thezfj<3 casegwhere the

sample space is—=,+=]). We then have

wherec is a constant that could be obtained by fixing the

normalization of the probability density &&=0. The prob- aZSq 2mwksg
ability density is given by(note that the cutoff now is a =—
function of time and goes to zero as time passes, meaning Ix? h
that the sample space shrinks as time goes on

(1-0q)
(x;t)= cexr{— t
g [ Jar ¢

from which we note that we must hawe>0. The energy, e —— =~ -
now, is a function of time, as expected. In Fig. 1 we plot the
behavior of the energk, as a function of the parameter

q

(1-g)mw
-

]1,(1_q) and Eq.(30) becomes the transcendental equation
2

057 Eq {an.)

With these solutions we may calculate the averages in Eq.
(22) once we know the behavior of the fluctuations in the
momenta. Just as an example of the method, suppose that we
have found(by experimental means, for instandhat these
fluctuations behave as

I
I
I
I
|
I
I
|
I
I
I
|
1

E@[5p(x,0)8p(x,5)]=E@[5p(x)]? exp( — ¥), v R

. . FIG. 1. The behavior of the ground state enekgyof the har-
meaning that the correlation of the two momentum fluctuamonic oscillator with respect to the Tsallis statistical paramater

tions decays exponentially in time. Now we can use expresks value, wheng=1 is E;=0.5 a.u. as usualwe have madé:
sion (5) to write Eq.(22) as =w=1).
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A
o=l

whereC is given by Eq.(28). We can write the integral as

Mw
[1+2(1-q)C]— 5—X

](Zq—l)/(l—q)
dx,
ﬁq

+ oo
,BVJ {1+ yx2}vdx,

where f=[1+2(1-q)C], y=(q—1)mw/Bhy, and v

Y
- - ~(8a-1)/[2(a-1)]
” [1+2(1—-q)C]

with

PHYSICAL REVIEW E 64 036125

=(29—1)/(1—q). This integral may be easily calculated
and gives

u+1/2‘/;r(_ v—1/2)
Vq—1I'(—»)

and the transcendental equation becomes

Jq—_lr(

yaNTT

N
r[z(c;ql)J)( . ) \/mzw

q—1

q+1 [2(a-1)]/(a+1)

2(9-1)

| | Vel
20| | Vel 2

If we putZ=w=1, then we finally get
q+1 —[2(83g-1)]/(q+1)

- ( )”“J— [Z(q 1)
oy

| k=g

2(q—1)
which is a transcendental equation fgr if we know the

X
2g—-1
vg—1rI a

-1

value ofy, as assumed here. In Fig. 2 we plot the behavior of

atr| gy

the particles composing the system. This system is a closed
one, since no other external force field is present in the exact
Newtonian equations governing the movement of each par-
ticle. The total energy of the system is, therefore, conserved.
Now we make the decision of treating the closed single sys-
tem as composed by two subsystems: the partig@esntu-

ally, only one and the force field, each one capable of keep-
ing some amount of energy. We also choose to describe the
parameters of the subsystem composed by the particles,
while abstracting from those related with the force field,
which then turns into the thermal reservoir of the whole sys-
tem. With the adoption of this strategy of description, statis-
tical physics tells us that there will appear fluctuations re-

the right-hand side of this equation. We thus see that, for 1Y
each value ofy (greater than approximately 0.ghere will 551
be at least one value @ that is, one choice for the Tsallis
parameter giving the statistical behavior of the system. The 5]
calculations of the other two cases, related to the two other
allowed intervals ofj, are similar and will not be done here. 151
In the next section we will present a deeper interpretation of
these results. 11
VI. CONCLUSIONS 059
The physics governing the interpretation of Eg3), for d

the particular casgq=1, was already developed in our pre- STT12714 6 18 2 22 24 26 28 3
vious paperg3-5]. It is opportune, however, to develop its  FIG. 2. The behavior of the parametgrwith respect to the
generalized version. In the present framework we are considfsallis statistical parametey for the ground state of the harmonic
ering one single system where a force figldth a physical  oscillator. Note the asymptotic behavior negr 3 (we have made

potential functionV(x)] is responsible for the interaction of zZ=w=1).
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sponsible for the exchange of energy between the twenergy of the particle system by increasing the energy of the
subsystems. In this case, for instance, the energy of the pdiield system. Indeed, we can envisage such a situation when
ticles, being taken into account explicitly, will fluctuate, a particle makes transitions between two levels of energy,
sometimes being lowered by transferring energy to the forcgiving up a photorfwhich is the same as giving energy to the
field, sometimes being increased taking energy from thelectromagnetic field, for instanee-it is needless to say that
force field. This means that the average potential, governinthis is a nonequilibrium situation, where we expect the range
the average movement of the particles will not be given simg<0 to become important.
ply by V(x), but we will have to correct it to take into ac-  We thus know that, given the type of fluctuatiak®own
count, as an average, the energy fluctuations. This correctidsy any other methodor the energy of the system of par-
is precisely the one given by the second term on the righticles, it is possible to discover, using express({@8) and/or
hand side of Eq(24). Up to this point, the analysis is com- Eg. (22), the appropriate value of the parametgrin any
pletely equivalent to the one we have made in Papd5lll  case, expressiof22) gives us the means to interpret the role
In that paper, however, we ha@ssumed as an axiothat  of the parameteq.
the statistics governing the fluctuations is the one related Thereis, however, an advantage of working with the for-
with the Boltzmann-Gibbs entropy function. As far as gener-malism related with Eq(23). It allows us to visualize the
alized entropies are considered, this may be understood asaaerage dynamical behavior of the systema function of
mere wild guessvery fruitful, indeed, but still a guegsitis  the parameter gThis may be of invaluable help in the in-
possible that, besides the Boltzmann-Gibbs entropy rule gowestigation of the relations between this parameter and dy-
erning the behavior of the fluctuatiofthe energy exchange namical systems and may also help, we hope, finding the
between the particle subsystem and the force field resgrvoirexplicit connection between the paramegeand fractal be-
there are other rules, depending upon some characteristics b&vior. However, we leave this analysis for a future paper.
the system that go beyond this latter entropy; some of them There are a number of other alternatives for the Tsallis
may well be modeled by the Tsallis generalization of theentropy generalization. They might be taken into account in
Boltzmann-Gibbs entropy rule fay# 1. the same fashion we did in the present paper. This, however,
With respect to results in the range<0, one may argue would be a mere mathematical exercise that, most probably,
that, since the system of particles and fiéldservoij is  would not bring about any new fundamental explanation, and
closed there is no room for a dissipative solution; we stresghis is why we kept ourselves within the scope of the Tsallis
that this is not the case here. What is being dissipated is thgeneralization.
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