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Possible physical meaning of the Tsallis entropy parameter
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Since the proposal of the Tsallis generalized entropy, the general explanation of the role played by the
parameterq that defines which specific entropy to pick among a whole family, remained somewhat partial and
tentative, although some particular examples were taken into account specifically. The purpose of the present
paper is to present a rigorous formal derivation of a mathematical expression giving the parameterq in terms
of the momentum fluctuations of a stochastic process, thus furnishing at least one of its possible physical
origins.
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I. INTRODUCTION

In 1988 Tsallis proposed a generalized entropy ma
ematically given by@1#

Sq5kB

12(
i

pi
q

q21
,

wherekB is the Boltzmann constant, which for the equipro
ability case, like in the microcanonical ensemble, becom

Sq5kB

r12q21

12q
;

this expression in the limitq→1 reproduces the Boltzmann
Gibbs entropy

S152kB ln r.

This generalization brought about the problem of know
the physical interpretation of the parameterq labeling the
whole set of entropies. Other sets of entropies were a
proposed@2#, each one with its own set of properties, but w
will focus only on the Tsallis generalization in this paper
will be using the equiprobability case for reasons that w
soon become clear.

Very recently I presented an axiomatic method allowi
the derivation of the Schro¨dinger equation based upon thre
quite simple postulates@3# ~hereafter Paper I!. This deriva-
tion was then shown to be equivalent to another derivat
also made by me@4# ~Paper II!, based upon the notion o
entropy; I showed then that the Schro¨dinger equation is
mathematically a tributary of the concept of the Boltzman
Gibbs entropy. In a further development of the derivation
also proved@5# ~Paper III! the derivations of Papers I and
to be mathematically equivalent to the stochastic deriva
of de la Pen˜a and Cetto@6# and a somewhat complete inte
pretation of the formalism in terms of fluctuations~stochas-
ticity! was advanced.

The derivation method of the usual Schro¨dinger equation
presented in Paper II was then easily extended by Olavoet al
@7# ~Paper IV! to embrace the Tsallis generalization of t
Boltzmann-Gibbs entropy and a Schro¨dinger-type equation
1063-651X/2001/64~3!/036125~7!/$20.00 64 0361
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was found, which reduces to the usual linear Schro¨dinger
equation in theq→1 limit, as required. We called this equa
tion the generalized Schro¨dinger equation. In the derivation
done in Paper IV~to which the reader is referred for th
details! we wrote~for the equiprobability case!

r~x;t !5S 11
@12q#

kB
Sq~x;t ! D 1/(12q)

~1!

and used the Liouville equation and the notion of fluctuat
to find the generalized Schro¨dinger equation, given by

2
\q

2

2mFr~x;t !12q
]2 ln cq~x;t !

]x2
1qH ] ln cq~x;t !

]x J 2G1V~x!

5 i\qAq
] ln cq~x;t !

]t
, ~2!

where

\q5A32q

2
\

and

ln cq~x;t !5
1

2kB
Sq~x;t !1

is~x;t !

\qAq
~3!

with s(x;t) related to the mean momentum of the syste
throughp(x,t)5]s(x,t)/]x and

r~x;t !5@11~12q!ln$cq* ~x;t !cq~x;t !%#1/(12q). ~4!

The equation above, for reasons presented in Paper IV
valid for the whole allowed interval2`,q,3. It is impor-
tant to stress that, whenq,0 we have a hyperbolic-type
equation given by

2
\q

2

2mFr~x;t !12q
]2 ln cq~x;t !

]x2
1qH ] ln cq~x;t !

]x J 2G1V~x!

52\qAuqu
] ln cq~x;t !

]t
,
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L. S. F. OLAVO PHYSICAL REVIEW E 64 036125
and not the parabolic-type equation that is obtained foq
.0. Equation~2! is the expression we must find by ou
stochastic derivation to be presented in the next section. N
it is possible to justify why we are using the equiprobabil
expression for the probability density; the derivation meth
allows us to find a generalized Schro¨dinger equation~or a
Schrödinger equation, in the usual case!, which is related,for
each probability density, with the same energy~we could
have labeled the densities by quantum numbers to make
point even more explicit!. In the process of derivation~see
Paper IV! we also found that the average of the moment
fluctuations taken over momentum space alone is given

dp~x!252
\q

2

4kB
r~x!q21

]2Sq

]x2
, ~5!

where the result still depends uponx, in general, since the
average process was taken only over momentum space

In the next section we will extend this generalization
the developments made in Paper III and show what kind
stochastic process is related to this generalized Schro¨dinger
equation. With these mathematical developments and
the extension of the interpretation already presented in
pers I–III, we will be capable to set forth at least one po
sible interpretation~in terms of fluctuations! for the role of
the parameterq in actual physical systems. This is the aim
the present paper.

The paper is arranged in the following manner. In t
second section we will show how we can generalize the
chastic derivation of Paper III to obtain again the generali
Schrödinger equation~2!. In the third section we will show
that the derivation of Paper III and the present stochastic
are fully equivalent~by means of the Onsager relations! and
this will make it possible for us to show very clearly the ro
of the parameterq within the formalism. The present resul
have the advantage of being totally formal and mathem
cally exact, while furnishing quite a direct physical interpr
tation. In the fourth section we will present the interpretati
of the results found in the previous sections and also re
mulate the mathematical appearance of the theory to p
into a Newtonian format~which is consistent with the sto
chastic approach and also much easier to grasp!. Section V
will be devoted to an application of the formal developme
of the previous sections. The last section will be reserve
our concluding remarks.

II. STOCHASTIC DERIVATION

The present stochastic derivation will follow very close
the general lines of the one made by de La Pen˜a and Cetto
@6# and will be just a generalization of their result.

Now we will considerx(t) as a stochastic process. Th
means that the velocity related with this process canno
obtained by its direct derivation, forx(t) is not, in general,
differentiable.

In this case we have to introduce a finite time intervalDt,
small compared with the characteristic times of the syste
atic movement~the one related with Newton’s equation!, but
large enough compared with the correlation time of thefluc-
03612
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tuating force~the so-called coarse graining!.
SinceDt is a very small time interval, we may write th

following expansion:

1

Dt
@ f „x~ t1Dt !,t1Dt…2 f „x~ t !,t…#

'
] f

]t
1

1

Dt
expFr~x;t !12qdx

]

]xG f , ~6!

where f is an arbitrary function; the difference from th
present calculation to the one already found in the literat
@6# is simply the extra factorr(x;t)12q in the exponent of
the translation operator. This means that, contrary to
usual stochastic process that furnishes the linear Schro¨dinger
equation, translations within the system bydx will be depen-
dent on the position where the translation takes place~more
specifically they will depend upon the density at the po
where the translations take place, which already explains
source of nonlinearity of the generalized Schro¨dinger equa-
tion!. In the whole derivation process I might have writte
expression~6! as simply

] f

]t
1

1

Dt
expFg~x;t !dx

]

]xG f ,

and then looked for the functiong(x;t) as an ansatz that wil
furnish the correct equation. In what follows I preferred
use the factorr(x;t)12q directly, which is a restricted case o
the general ansatz, since it makes the derivation easie
understand.

The above expression~6! may be rewritten as

1

Dt
@ f „x~ t1Dt !,t1Dt…2 f „x~ t !,t…#

'F] f

]t
1

1

Dt
dxr~x;t !12q

] f

]x

1
1

2Dt
~dx!2r~x;t !12q

]

]x H r~x;t !12q
] f

]xJ G . ~7!

Using expression~7! and repeating without modifications a
the developments made in Paper III~to which the reader is
strongly referred to!, we can find the following equations:

]v
]t

1v
]v
]x

2n2

]

]x S r12q
]v
]xD2lu

]u

]x
2ln1

]

]x S r12q
]u

]xD
5 f 0 /m ~8!

and

]u

]t
1v

]u

]x
1u

]v
]x

1n1

]

]x S r12q
]v
]xD2n2

]

]x S r12q
]u

]xD50,

~9!
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POSSIBLE PHYSICAL MEANING OF THE TSALLIS . . . PHYSICAL REVIEW E 64 036125
whereu(x,t) is the stochastic velocity andv(x,t) is the sys-
tematic velocity andv2 andv1 are characteristic constan
of the derivation~see Paper III! that will be fixed in what
follows.

In the Newtonian limit, where there are no fluctuation
we have

n15n250→u50 ~10!

thus giving

m
dv
dt

5 f 052
]V~x!

]x
, ~11!

as desired. Equation~8! and~9! are the main equations gov
erning the dynamics of the system.

We now substitute in Eqs.~8! and ~9! the expressions

n250; mv5p~x;t !5
]s~x;t !

]x
~12!

and write the stochastic velocity as

u5
\q

2mkB

]Sq

]x
~13!

to find the two equations

]

]x F ]s

]t
1

1

2m S ]s

]xD 2

1V~x!2
l\q

2

8m S 1

kB

]Sq

]x D 2

2
ln1\q

2 S r12q

kB

]2Sq

]x2 D G50 ~14!

and

]

]x S ]Sq

]t
1

1

kB

]Sq

]x

1

m

]s

]x
1

2n1r12q

\q

]2s

]x2D 50. ~15!

These last two equations, with the substitution

l5q,

n15\q /~2qm! ~16!

give, finally,

]s

]t
1

1

2m S ]s

]xD 2

1V~x!2
\q

2

4mF S r12q

kB

]2Sq

]x2 D 1
q

2 S 1

kB

]Sq

]x D 2G
50 ~17!

and

]Sq

]t
1

1

kB

]Sq

]x

1

m

]s

]x
1

r12q

qm

]2s

]x2
50. ~18!

These two equations are exactly those we get if we subst
expression~3! into the generalized Schro¨dinger equation~2!,
meaning that they are equivalent, as we wanted to show
03612
,
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III. CONNECTION BETWEEN THE DERIVATIONS

The results of the present section are a straightforw
generalization of those derived by me in a previous pa
@5#. However, in the present generalized formulation th
will furnish precisely the result we are looking for.

We may begin by rewriting Eq.~13!,

u5
\q

2mkB

]Sq

]x
, ~19!

and remember that, for our fluctuating system, we expect
linear Onsager relations to be applicable@7# ~the Onsager
relations were proved to be also valid within the Tsallis s
tistics, as shown in@8#!,

u5a
]Sq

]x
, ~20!

wherea is the so-called ‘‘friction coefficient’’ given by the
expression@9#

a5
1

m2kB
E

2`

0

E(q)@dp~0!dp~s!#0ds

5
1

m2kB
E

2`

0

dsE
2`

1`

r~x!q@dp~x,0!dp~x,s!#dx, ~21!

whereE(q)( f ) means the expectation value of the argumef
taken using the Tsallis procedure. Equations~19!, ~20!, and
~21! give

\q5\A32q

2

5
2

mE
2`

0

dsE
2`

1`

r~x!q@dp~x,0!dp~x,s!#dx; ~22!

but, since\ is a constant, which may be fixed by experime
using the common value obtained whenq51, the expression
above may be considered as the very definition of the par
eter q and it unequivocally shows the connection betwe
this parameter and the average momentum fluctuations.
is precisely the result we were willing to obtain and it fu
nishes a physical connection betweenq and the stochastic
processes taking place within the considered subsystem
note, however, that the parameterq appears at both sides o
expression~22!; this is so because the averages have to
calculated using the probability function that underlies t
choice of the entropy. Thus, expression~22! furnishes, in
principle and theoretically, a transcendental equation giv
the value ofq, whenever one is able to calculate the integ
on the right-hand side of expression~22!. However, from the
experimental point of view, if one is able to determine e
perimentally the value of the ‘‘friction coefficient’’ related
with some stochastic process, its departure from the valu
the usual Planck’s constant will furnish, experimentally, t
underlying value of the parameterq.
5-3
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IV. FURTHER RESULTS

We have said in the last section that Eqs.~17! and ~18!
give the whole dynamical behavior of the system. It is qu
interesting to write these equations in a somewhat differ
fashion that may enlighten our understanding of the pres
subject. Indeed, it is very simple to show that Eq.~17! may
be rewritten as

dp~x;t !

dt
52

]

]x H V~x!2
\q

2

4mFr~x;t !12q

kB

]2Sq

]x2

1
q

2 S 1

kB

]Sq

]x D 2G J , ~23!

which is a Newton-like equation for anaverage momentum
and an effective potential

Ve f f~x!5V~x!2
\q

2

4mFr~x;t !12q

kB

]2Sq

]x2
1

q

2 S 1

kB

]Sq

]x D 2G .

~24!

The second term on the right-hand side of the previous
pression gives the average alteration of the potential func
by the momentum fluctuations~see Papers II and IV!.

Thus, Eq.~23! furnishes the connection between the a
erage dynamical behavior of the system and the statis
governing the behavior of the fluctuations. The second te
on the right-hand side of expression~24! is nothing but a
generalized version of Bohm’s~so-called! quantum potential,
whose origin~as we saw in Paper IV! is kinetic and comes
from the fluctuations.

V. APPLICATION

We will now present a simple example of the abov
mentioned results by solving analytically the harmonic os
lator problem for the ground state~the excited states ar
much more difficult to solve!. Thus, the potential function is
given by

V~x!5
1

2
mv2x2,
03612
e
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wherem is the mass of the particle,v is the frequency of the
movement; the generalized Schro¨dinger equation~2! be-
comes

2
\q

2

2mFr~x;t !12q
]2 ln cq~x;t !

]x2
1qH ] ln cq~x;t !

]x J 2G
1

1

2
mv2x25 i\qAq

] ln cq~x;t !

]t

and has, as its solutions~the reader may verify this by direc
substitution!, the following.

~1! For 1,q,3,

cq~x;t !5eC expS 2
mv

2\q
x2DexpS 2

iEq

Aq
t D ~25!

5eC expS 2
mv

2\q
x2DexpH 2

iv

2Aq
@122~q

21!C#tJ , ~26!

with density given by@using Eq.~1!#

r~x,t !5H @112~q21!C#1
~q21!mv

\q
x2J 1/(12q)

~27!

and the constantC, given by the normalization integral~note
the integration limits; there is no cutoff and the sample sp
is @2`,1`#)

E
2`

1`

r~x,t !qdx51,

being written as
C5
1

2~q21! H 12FA \

mvS 32q

2 D 1/4ApGH q11

2~q21!J
Aq21GS q

q21D G
2(q21)/(q11)J . ~28!
The energyEq becomes

Eq5@112~12q!C#
\qv

2
. ~29!

~2! For 0,q,1,
cq~x;t !5eC expS 2
mv

2\q
x2DexpH 2

iv

2Aq
@112~12q!C#tJ

with the probability density given by
5-4
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r~x;t !5H @122~12q!C#2
~12q!mv

\q
x2J 1/(12q)

,

where, now, the constantC, given by the integration~note
that we have a cutoff, which is given by the positive a
e

he

ni

he

E
he
at

ua
e

03612
negative roots of the probability density, and the sam
space must be finite!

E
2a

1a

r~x;t !qdx51,

becomes
C5
1

2~12q! H FA \

mvS 32q

2 D 1/4A12qGH 32q

2~12q!J
ApGS 1

12qD G 2(12q)/(11q)

21J .
r

The energy is, again,

Eq5@112~12q!C#
\qv

2
.

This result justifies what we have said above about the us
the microcanonical ensemble; indeed, for eachq we will be
working with the states related with the same energyEq .

~2! For 2`,q,0,

cq~x;t !5expF2
1

2~12q!GexpS 2
mv

2\q
x2D

3expH c expF2
~12q!

Auqu
vtG J ,

wherec is a constant that could be obtained by fixing t
normalization of the probability density att50. The prob-
ability density is given by~note that the cutoff now is a
function of time and goes to zero as time passes, mea
that the sample space shrinks as time goes on!

r~x;t !5H c expF2
~12q!

Auqu
vtG2

~12q!mv

\q
x2J 1/(12q)

,

from which we note that we must havec.0. The energy,
now, is a function of time, as expected. In Fig. 1 we plot t
behavior of the energyEq as a function of the parameterq.

With these solutions we may calculate the averages in
~22! once we know the behavior of the fluctuations in t
momenta. Just as an example of the method, suppose th
have found~by experimental means, for instance! that these
fluctuations behave as

E(q)@dp~x,0!dp~x,s!#5E(q)@dp~x!#2 exp~2gs!,

meaning that the correlation of the two momentum fluct
tions decays exponentially in time. Now we can use expr
sion ~5! to write Eq.~22! as
of

ng

q.

we

-
s-

\q5
2

mE
2`

0

exp~2gs!dsE
2`

1`

r~x!q@dp~x!#2dx

52
\q

2

2gmkB
E

2`

1`

r~x!2q21
]2Sq

]x2
dx,

thus giving

2
2gmkB

\q
5E

2`

1`

r~x!2q21
]2Sq

]x2
dx. ~30!

Let us apply the above result to the 1,q,3 case~where the
sample space is@2`,1`#). We then have

]2Sq

]x2
52

2mvkB

\q

and Eq.~30! becomes the transcendental equation

FIG. 1. The behavior of the ground state energyEq of the har-
monic oscillator with respect to the Tsallis statistical parameteq.
Its value, whenq51 is E150.5 a.u. as usual~we have made\
5v51).
5-5
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g

v
5E

2`

1` H @112~12q!C#2
mv

\q
x2J (2q21)/(12q)

dx,

whereC is given by Eq.~28!. We can write the integral as

bnE
2`

1`

$11gx2%ndx,

where b5@112(12q)C#, g5(q21)mv/b\q , and n
r o
fo

s
h

th
.
o

e-
ts
si

f

03612
5(2q21)/(12q). This integral may be easily calculate
and gives

bn11/2
ApG~2n21/2!

Aq21G~2n!
A \q

mv
,

and the transcendental equation becomes
g

v
5@112~12q!C#2(3q21)/[2(q21)]

ApGF 3q21

2~q21!G
Aq21GS 2q21

q21 D S 32q

2 D 1/4A \

mv
,

with

C5
1

2~q21! H 12FA \

mvS 32q

2 D 1/4ApGH q11

2~q21!J
Aq21GS q

q21D G
[2(q21)]/(q11)J .
sed
act
ar-
ed.
ys-

p-
the
les,

ld,
ys-
tis-
re-

c

If we put \5v51, then we finally get

g5F S 32q

2 D 1/4ApGH q11

2~q21!J
Aq21GS q

q21D G
2[2(3q21)]/(q11)

3

ApGF 3q21

2~q21!G
Aq21GS 2q21

q21 D S 32q

2 D 1/4

,

which is a transcendental equation forq, if we know the
value ofg, as assumed here. In Fig. 2 we plot the behavio
the right-hand side of this equation. We thus see that,
each value ofg ~greater than approximately 0.3! there will
be at least one value ofq, that is, one choice for the Tsalli
parameter giving the statistical behavior of the system. T
calculations of the other two cases, related to the two o
allowed intervals ofq, are similar and will not be done here
In the next section we will present a deeper interpretation
these results.

VI. CONCLUSIONS

The physics governing the interpretation of Eq.~23!, for
the particular caseq51, was already developed in our pr
vious papers@3–5#. It is opportune, however, to develop i
generalized version. In the present framework we are con
ering one single system where a force field@with a physical
potential functionV(x)] is responsible for the interaction o
f
r

e
er

f

d-

the particles composing the system. This system is a clo
one, since no other external force field is present in the ex
Newtonian equations governing the movement of each p
ticle. The total energy of the system is, therefore, conserv
Now we make the decision of treating the closed single s
tem as composed by two subsystems: the particles~eventu-
ally, only one! and the force field, each one capable of kee
ing some amount of energy. We also choose to describe
parameters of the subsystem composed by the partic
while abstracting from those related with the force fie
which then turns into the thermal reservoir of the whole s
tem. With the adoption of this strategy of description, sta
tical physics tells us that there will appear fluctuations

FIG. 2. The behavior of the parameterg with respect to the
Tsallis statistical parameterq for the ground state of the harmoni
oscillator. Note the asymptotic behavior nearq53 ~we have made
\5v51).
5-6
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sponsible for the exchange of energy between the
subsystems. In this case, for instance, the energy of the
ticles, being taken into account explicitly, will fluctuat
sometimes being lowered by transferring energy to the fo
field, sometimes being increased taking energy from
force field. This means that the average potential, govern
the average movement of the particles will not be given s
ply by V(x), but we will have to correct it to take into ac
count, as an average, the energy fluctuations. This correc
is precisely the one given by the second term on the r
hand side of Eq.~24!. Up to this point, the analysis is com
pletely equivalent to the one we have made in Paper III@5#.
In that paper, however, we haveassumed as an axiomthat
the statistics governing the fluctuations is the one rela
with the Boltzmann-Gibbs entropy function. As far as gen
alized entropies are considered, this may be understood
mere wild guess~very fruitful, indeed, but still a guess!. It is
possible that, besides the Boltzmann-Gibbs entropy rule g
erning the behavior of the fluctuations~the energy exchang
between the particle subsystem and the force field reserv!,
there are other rules, depending upon some characteristi
the system that go beyond this latter entropy; some of th
may well be modeled by the Tsallis generalization of t
Boltzmann-Gibbs entropy rule forqÞ1.

With respect to results in the rangeq,0, one may argue
that, since the system of particles and field~reservoir! is
closed there is no room for a dissipative solution; we str
that this is not the case here. What is being dissipated is
03612
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energy of the particle system by increasing the energy of
field system. Indeed, we can envisage such a situation w
a particle makes transitions between two levels of ene
giving up a photon~which is the same as giving energy to th
electromagnetic field, for instance!—it is needless to say tha
this is a nonequilibrium situation, where we expect the ran
q,0 to become important.

We thus know that, given the type of fluctuations~known
by any other method! or the energy of the system of pa
ticles, it is possible to discover, using expression~29! and/or
Eq. ~22!, the appropriate value of the parameterq. In any
case, expression~22! gives us the means to interpret the ro
of the parameterq.

Thereis, however, an advantage of working with the fo
malism related with Eq.~23!. It allows us to visualize the
average dynamical behavior of the systemas a function of
the parameter q. This may be of invaluable help in the in
vestigation of the relations between this parameter and
namical systems and may also help, we hope, finding
explicit connection between the parameterq and fractal be-
havior. However, we leave this analysis for a future pape

There are a number of other alternatives for the Tsa
entropy generalization. They might be taken into accoun
the same fashion we did in the present paper. This, howe
would be a mere mathematical exercise that, most proba
would not bring about any new fundamental explanation, a
this is why we kept ourselves within the scope of the Tsa
generalization.
cs
@1# C. Tsallis, J. Stat. Phys.52, 479 ~1988!.
@2# S. Abe, Phys. Lett. A224, 326~1997!; A.R.R. Papa, J. Phys. A

31, 1 ~1998!; E.P. Borges and I. Roditi, Phys. Lett. A246, 399
~1998!; P.T. Landsberg and V. Vedral,ibid. 247, 211 ~1998!;
P.T. Landsberg, Braz. J. Phys.29, 46 ~1999!; C. Anteneodo and
A.R. Plastino, J. Phys. A32, 1089~1999!; A.K. Rajagopal and
S. Abe, Phys. Rev. Lett.83, 1711~1999!; R. Rossignoli and N.
Canosa, Phys. Lett. A264, 148 ~1999!; R. Salazar, A.R.
Plastino, and R. Toral, Eur. Phys. J. B17, 679 ~2000!.
@3# L.S.F. Olavo, Physica A262, 197 ~1999!.
@4# L.S.F. Olavo, Physica A271, 260 ~1999!.
@5# L.S.F. Olavo, Phys. Rev. A61, 052109~2000!.
@6# L. de La Pen˜a and A.M. Cetto, Phys. Rev. D3, 795 ~1971!.
@7# L.S.F. Olavo, A.F. Bakuzis, and R.Q. Amı´lcar, Physica A271,

303 ~1999!.
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